1.Relation and Function
normal

વિધેય $f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ નો પ્રદેશ્ગણ ........... થાય.  $($ જ્યા $[.] \rightarrow G.I.F.)$

A

$( - \infty ,2)\, \cup \,[ - 1,2]$

B

$[0,2]$

C

$[-1,2]$

D

$(0,2)$

Solution

$\text { Case }-1:  4-\mathrm{x}^{2} \geq 0 $ and $[\mathrm{x}]+2>0 $ 

$ \Rightarrow \mathrm{x}^{2}-4 \leq 0 \Rightarrow \mathrm{x}[\mathrm{x}]>-2 $ 

$ \Rightarrow \mathrm{x} \in[-2,2] $ and $ \mathrm{x} \in[-1, \infty) $ 

$ \mathrm{x} \in[-1,2] $ 

$ \text { Case }-2:  4-\mathrm{x}^{2} \leq 0 $    and       $[\mathrm{x}]+2<0 $

    and    $[{\rm{x}}] <  – 2$

$x \in(-\infty,-2] \cup[2, \infty) $ and $ x \in(-\infty,-2)$

$\Rightarrow x \in(-\infty,-2]$

$\therefore $  answer $x \in(-\infty,-2] \cup[-1,2]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.